搜贴子 搜作者(贴子) 搜作者(回复)
锦州家教网首页 | 
社区首页 > 数学专区 > 浏览
楼主
教学中应注意的几个问题
(1)把握好教学要求
由于本章联系的知识面广,具有知识交汇点的特点,在应试教育的“一步到位”的教育思想的影响下,本章的教学要求很容易拔高,过早地进行针对“高考” 的综合性训练,从而影响了基本内容的学习和加重了学生负担。
事实上,学习是一个不断深化的过程。作为在高一(上)学习的这一章,应致力于打好基础并进行初步的综合训练,在后续的学习中通过对本章内容的不断应用来获得巩固和提高。最后在高三数学总复习时,通过知识的系统梳理和进一步的综合训练使对本章内容的掌握上升到一个新的档次。
为此,本章教学中应特别注意一些容易膨胀的地方。例如在学习数列的递推公式时,不要去搞涉及递推公式变形的论证、计算问题,只要会根据递推公式求出数列的前几项就行了;在研究数列求和问题时,不要涉及过多的技巧;
(2) 有意识地复习和深化初中所学内容
与现行中学课本一样,新课本由于课时较紧等多种原因.在教学内容方面基本上也是直线编排的,对于初中学过的多数知识.在高中没有系统深入学习的机会。而初中内容是学习高中数学的必要基础,因而在学习高中内容时有意识地复习、深化初中内容显得特别重要。本章是高中数学的第三章,距离初中数学较近,与初中数学的联系最广,因而教学中应在沟通初、高中数学方面尽可能多地作一些努力。例如:
在等差数列、等比数列的通项公式和前n项和的公式中,涉及a1、 an、 n、 d、Sn几个量之间的关系,我们常常要通过将公式变形用其中的已知量来表示未知量。在这过程中,应有意识地复习等式的变形,提醒并及时纠正在变形中容易出现的错误。在根据有关公式和已知条件求未知量(比如求某一项时),常常要列出方程或方程组,然后求解。在这过程中,让学生认识我们的问题实际上是解一个方程或方程组,然后分析其中哪些是已知量,有几个末知量,能不能求解,怎样求解。通过这种有意识的分析,不仅复习了解方程和方程组的知识。而且了解了它的应用,培养了用方程或方程组解决问题的意识;
(3) 适当加强本章内容与函数的联系
适当加强这种联系,不仅有利于知识的融汇贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步。比如,学生在此之前接触的函数一般是自变量连续变化的函数,而到本章接触到数列这种自变量离散变化的函数之后,就能进一步理解函数的一般定义,防止了前面内容安排可能产生的学生认识上的负迁移;
本内容与函数的联系涉及以下几个方面。
1.数列概念与函数概念的联系。
相应于数列的函数是一种定义域为正整数集(或它的前n个数组成的有限子集)的函数,它是一种自变量“等距离”地离散取值的函数。从这个意义上看,它丰富了学生所接触的函数概念的范围。
但数列与函数并不能划等号,数列是相应函数的一系列函数值。基于以上联系,数列也可用图象表示,从而可利用图象的直观性来研究数列的性质。数列的通项公式实际上是相应因数的解析表达式。而数列的递推公式也是表示相应函数的一种方式,因为只要给定一个自变量的值n,就可以通过递推公式确定相应的f(n)。这也反过来说明作为一个函数并不一定存在直接表示因变量与自变量关系的解析式。
2.等差数列与一次函数、二次函数的联系。
从等差数列的通项公式可以知道,公差不为零的等差数列的每一项an是关于项数n的一次函数式。于是可以利用一次函数的性质来认识等差数列。例如,根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列。
此外,首项为a1、公差为d的等差数列前n项和的公式可以写为:
即当 时,Sn是n的二次函数式,于是可以运用二次函数的观点和方法来认识求等差数列前n项和的问题。如可以根据二次函数的图象了解Sn的增减变化、极值等情况。
(4)注意培养学生初步综合运用观察、归纳、猜想、证明等方法的能力
综合运用观察、归纳、猜想、证明等方法研究数学,是一种非常重要的学习能力。事实上,在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳方法进行试探,提出猜想;最后采用证明方法(或举反例)来检验所提出的猜想。应该指出,能够充分进行上述研究方法训练的素材在高中数学里并非很多,而在本章里却多次提供了这种训练机会,因而在教学中应该充分利用,不要轻易放过。
() 在符号使用上与国家标准一致
为便于与国际交流,关于量和单位的新国家标准中规定自然数集N={0,l,2.3,……},即自然数从O开始。这与长期以来的习惯用法不同,会使我们感到别扭。但为了不与上述规定抵触,教学中还是要将过去的习惯用法改变过来,称数集{1,2,3,…}为正整数集,并记为N+。
作者:任老师(117418)09-06-13 20:19回复此贴
回复内容:
百分·锦州家教网 ©2003-2015